Biostatistics and

experimental design

Lecturer: Prof. dr. Ann Vanreusel, dr. Freija Hauquier

Practical Exercises: Freija Hauquier, Lara Macheriotou, Elise Toussaint

Contents

I 3 ol PP P PSPPSR VRPN 3
O R = 7= PP ORPPPPP 3
1.2. Exercise: Data analysis of hyperbenthos data.........cccoeeiveriiiiiiii e 5

2. INTFOAUCTION TO R 1ottt ettt ettt et e et e e bt e e b e e sab e e s bt e e aabeesabeeeabeeebbeesaseesareean 6
2.1 INSTAIING R oottt ettt e e st e e s st e e e s s abbe e e saabbee e s abeaeesaabeaeesanbaeeeeanbaeeenaes 6
2.2, RANEEITACE -ttt ettt et et b e b e bt bt bt bt e ehe e e he e bt e ehe e eaeesaeeshaesheenaee 6
2.3 RS @ CAICUIATON ..ttt 7
2.4 Objects, vectors, matrices and data framesS.......c.ueieeecuiiei i 8

24,0 OBJECES ..ttt e s et ne e et e e e s neeene 8
B Y=ot (0] £ J U P PP PP O P PR PPPPTPP 8
2.4.3 MAtriCeS @Nd [ISTS. . .eiiiiieiiieeiie ettt ettt ettt et s n et e e s s e nneees 11
2.4, DAt FrAMES ..ttt ettt ettt b et e b e e bt e b e e b e e e bt e s he e nae e eaeesatesaeas 12
2.5 Creating Sraphs iN R .. ittt st e e st e e e s sabt e e e s st be e e s sbbaeesanaeee s 17
2.5, 1 THE XY PUOT ettt ettt ettt et e st e e bt e e bt e e satee s sat e e s ateesabeeebaeenaneas 17
YA T T - =1 o] 1 TSP P PP PPRTPPPRRPP 20
2.5.3 The Package “LattiCe”ei ittt et ettt et e st e e baeesaeeas 22
2.6, SCIIPES -ttt ettt e et e e e st e e s a e e e s e e e e e a e e e s ae e e s raeee s 22
2.7 ClOSE R ettt ettt ettt et e b et e e a e e b e e bt e e e a bt e e bt e e b et e b bt e ea b et e bt e e aneeeaabe e e beeebaeenarees 23
2.8 EXBICISES coeeeiiiiiitie ettt st e s e e s b e e s et e s b e e e e 23

3 DS CIIPEIVE STATISTICS 1.uuutreeieeeii ittt e s e e e s s e e e et e e e e e e s s e e e e e e e s e e ennns 25

4 Formulas for statistical @NalySiS.......cocueerierieiiieeeee ettt st 26

D AN OV A ettt ettt e e e e —— et e e e e e e e e bttt e e e e e e e e e ——ateeeeeeeeaaabaataaeeeeeeaaabbrteeeeeeeeanaane 27
5.1 ASSUMPTIONS FOr ANOVA . ..ottt ettt ettt e st e et e e st be e s beesbeeesateesabeesabeeenbeeenanens 27

5.1.1 Normality Of the data ..ccc.eeoiiiiiie ettt sttt 28
Name=function (argl,arg2,...) EXPI L. 30
5.1.2 HOMOEZENEILY OF VAriANCESeeiceiieiiieeiie ettt ettt rte et e e e ste e s e e ennaeennaeeenreas 31

T (=] AP PP PP PP PPPP PP 31
ST TR e 1LY TP P PP PRTTPPRI 31
5.4 ANOVA ettt ettt e et e e ettt e e e e e s e e b bttt e e e e e e s e bbb et e e e e e e e e e r b ettt eeeeeeaanrrnnaeeeeeens 31
5.4.1 1-WAY ANOVA oo e s s s s e s s e e e s e e e s e e e s e e e e e e e e e e aeaeeaaaaaaaeaaeaeeeeeeeeeeeseeeeeeeeeeennnes 32
5.4.2 2-WAY ANOVA ..ottt eeee e tes et s s asses s s st sessasassnsssastasastesassasassasessanessnensneaes 32

5.5 NON-PArametriC tESTS. ...uiiiiiiiiiiee e e e e s e e e e e 33

L ST Lo 1y o o Vo Tol (1) £ PPN 33

6 COrrelation and FEEIESSIONcoiuuii ettt ettt e et e e bt e e st e s bt e e bt e e sabe e sabeesbbeesabeesabeeeanes 35
(o Oo T (=1 = o] o F PP PP VPSPPI 35
00 00t R 1T i o 0T T 4 =1 11 A OSSR 35
6.1.2 Parametric correlation: Pearson product MOmMEeNT.......ccueeiiiiieiiiriiieieeiieee e 35
6.1.3 Non-parametric correlation: SPearmMan rankcocieoiiierieieiie et 35
6.2 REEIESSION .eeiiiiiiiiite ettt e e e e s s et e e e e e e e s e e e e e e s s e a et e e e e e s s raereeeeeaas 37
6.2.1 SIMPIE MEEIESSION ..eiiuiiiiiiie ettt ettt ettt e et e st eeab e e e bt e e sabeesbee e bt e esabeesabaeenaeeas 37
6.2.2 MUILIPIE FEEIESSION . .eiiiiiiiieieiiiee e eitee ettt e s e e s st e e s s sabe e e s s bae e e ssabteeessabbeeesanneeeesnasees 38
B4 TASKS ettt ettt e h et e s bt e e bt e e bt e e sa b e s be e e ane e e aab e e s beeeabeeenatees 43
6.4.1 GlUCOSE EXPEIIMENT...ciiiiiiiiiieiiiee ettt ettt e sttt e e s st e e s s sabt e e s sttt e e ssabteeessbeeeesanneeeesnanes 43
6.4.2 Analysis of the hyperbenthos datain 3 European eStuaries........cccceeeecuveeeiiceeeesecveee e 43

1. Excel

1.1. Basics

Excel is a spreadsheet program that allows you to order, to process and to save numerical and text data in rows
(1,2,3, ...), columns (A, B, C, ...) and sheets (sheet 1, sheet 2, ...). Each unit (number, formula, text) is placed in a
cell which is indicated by a row number and a column letter, and if more than 1 sheet, by a sheet label.

In this exercise we will learn the basic principles of Excel.

- Start by filling in the following dataset in the first worksheet. Put the species in rows and the stations in
columns. Species names and station labels are filled in respectively on the first row and first column.

3 HS
s 4 3
£ :
stationl station2 n3 stationd s 5 stati tation8 s
0 0 1 1 6 50 1 0
0 0 0 4 40 100 1 1
0 0 1 2 2 1 0 0
0 o 1 6 5 o 0
1 2 1 4 40 o 0 a
0 o 1 8 80 0 0 o
1 2 1 1 10 2 o L]
120 2 1 8 80 10 1 0
ruwe data gdata | @& [3
READY @ 0N ———+ s

- Calculate at bottom of the data matrix the total amount of organisms per station (2 function in toolbar or
type: =SUM(B2:B9)

- FORMULAS can be filled in the cell where one wants to see the result. A formula is always preceded by =.
Each new operation within the formula, is delineated by brackets. In this way rather complex calculations
can be done in one movement. Some basic operations are: sum, - subtraction, / division, * multiplication,
A exponent.

- Aformula can be copied from 1 cell to all other possible adjacent cells by holding the square in the right
corner at the bottom of the cell (a 'handler'). When the cursor changes into a small cross you can drag the
formula to the other cells you wish. You can also simple copy and paste the formula. Take into account
that the formulas that you are using are relative in the sense that each time you drag the content of the
cell, the rows and columns are adapted e.g. =sum (a1:a020) becomes =sum(b1:b20) when this formula is
dragged from cell a21 to cell b21

- If this effect is not wanted, you can place a dollar sign ($) in front of the row or column code. In that case
the row and/or columns are fixed such that one can work with a particular cell content when dragging. Try
this out.

- Sort species from most abundant (dominant) over all stations to least abundant. Make sure that the
correct species names stay in place. Therefore you have to calculate in column L the total density per
species over all stations. Highlight all filled cells with exceptions of the station labels. Select Data — Sort-
Sort by column L, Descending.

- Calculate per species the following variables (use fx FUNCTION in the toolbar. Clicking All shows all
possible functions that can be calculated directly in Excel). Below are some commonly used functions:
- The mean density (AVERAGE)
- The standard deviation (STDEV) and the variance (VAR)
- The number of stations where a species is present (COUNTIF >0)
- The number of times a species is NOT present (FREQUENCY, bin array = 0).

- Inorder to calculate a DATA DISTRIBUTION (histogram), the “Data Analysis Toolpack” should be
installed. This toolpack is available if you see the subtab “Data Analysis” under the “Data” tab. If this is
not the case, you need to load the “Data Analysis Toolpack”: https://support.office.com/en-
us/article/Load-the-Analysis-ToolPak-6a63e598-cd6d-42e3-9317-6b40bala66b4
In order to calculate a data distribution (e.g. the number of values between 1 and 100, between 101-
200, ...), enter the values 0, 20, 40, 60, 80, 100 and 120 somewhere in the data sheet. Select “DATA —
DATA ANALYSIS — HISTOGRAM”. Use “input range” to select the data that should be analysed, “bin
range” is used to select the class borders. Using “Output range”, you can select the area in the data
sheet where the output will be generated. A graph output can be generated, including a cumulative
data distribution.

- Many other types of graphs can be constructed. Try out some graphs by first highlighting the data that
you want to show in the graph, and next by choosing the selected graph. Consider carefully for each
graph, what is exactly visualized and if the graph is appropriate for your data. How for instance would
you visualize the relation between the abundance of species 1 and species 2 (from the data matrix we
could already see that both species are related in appearance). Take into account that continuous data
can be connected, but this is not allowed for independent data points.

- Insert a sheet, and rename each sheet by double clicking the worksheet label. Name the original
worksheet for instance ‘raw data’. Copy and paste the first row and the first column to the 2nd
worksheet. Transfer the original data matrix to percentages (in relation to the total number of
organisms per station), so that you can see which species are dominant in each station. Calculate again
the sum per station (has to be 1 or 100). Change formulas to real values (copy-paste special — values).

- Copy the complete data matrix (total densities included) from sheet1 to a third worksheet and
transform the raw data in log (base 10) values. If there are zero values in the data, do not forget to
add 1 to the raw data. Show the values up to three decimals. Transfer the formula to real values.
Transpose row and columns (copy-paste special — transpose). Never put the transposed matrix on top
of the original matrix. Rename the work sheet (e.g.’log data’).

- Calculate on the first work sheet the Shannon-Wiener diversity index for each sample/station:
- H=-Xpl(np) with p = density per species/total density
- Show the obtained results in a graph in order to illustrate the change in diversity over the
different stations. Compare with number of species (=COUNTIF >0) and the dominance per
station.

Some useful tips

- Freeze panes (Click Window in menu bar): allows you to freeze row and/or column labels when you go
through a large data matrix. In case of the example data matrix: when you highlight cell b2, and next
you click freeze panes, you can scroll down to column Z or row 50 and still see the respectively station
and species names

- The undo function allows you to cancel the last (up to more than 10, depending on their complexity)
operations.

- Although Windows offers a typical mouse-driven environment, it can sometimes be useful to use
shortcuts. Some are mentioned in the pull-down menus of the menu bar (all shortcuts are shown in
the help-menu). Some often used combinations are:

- Ctrl-C or Ctrl-Insert (Copy)

- Ctrl-V or Shift-Insert (Paste)

- End-arrows (jumps to the last filled in cell (if a filled cell is highlighted), or to the next filled
cell if an empty cell is highlighted.

- Shift-End+arrows (idem as above but highlight all cells)

- Ctrl-Home (goes to Cel A1)

- Ctrl-PgUp and PgDown (changes worksheets)

The hyperbenthos includes animals that live just above the surface in marine and brackish water ecosystems.
The hyperbenthos can be sampled quantitatively (number of animals per surface area) with a hyperbenthic
sledge. The hyperbenthos includes mysids, amphipods, isopods, cumaceans, pycnogonids and chaetognaths
(permanent hyperbenthos) as well as (post)larval stages of shrimp, crabs and fish (temporary hyperbenthos).
On Minerva you will find the file “HYPERBENTHOS.xIs”.

A B © D E F G H 1
1 w3l wila w3 w3dc w28 w27 w25a w25) B & 2 = 2 e]
2 |Sagieleq 1 It 0 0 0 0 0 0 1 | stations = Saliniteit 1/Secchi diepte Temperatuur
3 | Gastspin 11 48 133 17 26 1 7 52t 2 w3 20
4 | schispir 21 24 52 12 7 0 2 10 3 w30a 30 001 20
5 |Schikerv 108 B 254 a7 135 1 3 70 4 w30b 29 001 20
6 |Mesoslah 81 1688 178 383 367 134 456 148 5 | wa0c 2a 001 20
7 Neominte 0 a 0 0 a 0 a]
8 Prauflex 0 0 0 0 1 0 0 4 OB w8 2 oo 2
9| Eurypulc 0 0 0 0 0 0 0 1 7 w2y 27 001 20
10 |Idotiine 4 81 E] 13 4 3 4 6 8| w2 26 001 20
11 Synispec i} o o 1] o] o o 9 w25b 25 001 20
12 | Spharugi i i i 0 i 0 i i 10] w2l 21 0.01 20
13 | Sphaserr 0 0 0 0 0 0 0 0 1 wio 19 0.01 21
14 | Cymospec 0 0 0 0 0 0 0 0
15 | Daphspec o 0 0 0 0 0 0 o e Wit 7 0o 21
16 | Caprine 0 4 0 1 0 0 0 0 3] wi2 12 003 22
17 |CaprSpec i 0 i 0 i 0 0 i 14 wi0 10 002 23
18 | Parityi 0 1 2 i i 0 i 0 15] ws) 002 23
19 | Gammerin 3 103 6 7 7 0 0 4 16| g26a 26 000 21
20 Gammsali o 0 21 0 0 0 0 o 17| az6b 26 0.00 21
21 | Gammzacd 0 0 0 0 0 0 0 0
22 | Gammdueh a a a i a 0 a a 180 g4 24 000 2
23 | Gammiocu 0 0 0 i 0 0 0 0 191 g20 20 001 22
24 | Melipaim 0 0 0 0 0 0 0 0 20| g8 18 003 2
95 | AhdsuEm 4 an n a A 1 n n 21 al4 14 003 23

This file includes two worksheets: one with the environmental data (salinity, temperature and secchi-depth),
and a second sheet including species abundances per station.

In total,

41 stations were sampled in August 1991: 14 in the Westerschelde, 15 in the Gironde, and 12 in the

Eems. In each of these estuaries sampling was done along a salinity gradient from polyhaline to oligohaline
environment. The labels of the samples reflect the estuary (first letter) and the salinity. In case multiple
samples were taken in the same salinity region, these are indicated by small letter (a, b, c, ...). For example
sample W30c was taken in the Westerschelde in a salinity region of 30 psu.

The aim of this exercise is to explore this dataset with Excel. Solve the following exercises and post your results
and explanation in a Word file on Minerva before the next practical.

1.

Examine how the total densities of hyperbenthos change over the salinity gradient for each estuary.
Visualise the results in a graph. Compare the results between the estuaries and discuss the results.

What are the 10 dominant taxa in the samples of the Westerschelde at 25 PSU? What are their
abundances? Make a graph showing the cumulative frequency distribution for these 10 taxa.

Compare the biodiversity between samples of the Westerschelde and the Eems at 0-10 psu and at 20-
30 psu. Compare both salinity zones between the two estuaries in terms of mean biodiversity (e.g.
Shannon-Wiener index) and variance (e.g. standard deviation). Make a graph and discuss the results.

Make a frequency distribution graph of density data of the Westerschelde over the geometric classes
(0, 1-75, 76-150, 151-300, 301-600, 601-1200, etc.).

Examine whether de densities of the mysid Mesopodopsis slabberi (Mesoslab) is related to one of the
environmental variables. Make graphs and discuss the results.

Post your results and discussion in a Word file on Minerva before the next practical. Use the Minerva
dropbox and send to Freija Hauquier.

2. Introduction to R

There is a wide array of statistical software packages (SAS, Statistica, S-Plus, R, MATLAB...). These packages are
slightly different, but they do offer the most important statistical routines. For this course, we choose to use R.
The main reason for this choice is that R is free open-source software. There is a large group of R-users
developing packages that are implemented in the R software environment. Hence, a lot of statistical
techniques can be applied through one or more of these packages and this allows the user to perform a wide
range of statistics (regression, anova, discriminant analysis, ordination, ...) in a single software package. Since
programming in R is relatively straightforward, advanced statistics can be applied within R.

A possible disadvantage of R is the lack of a GUI (Graphical User Interface). R users need to type commands in
the command line. The command syntax can be found in the associated help files. GUIs for R are available on
the internet, but we will not use these during this course. Using commands is not too difficult once you get
acquainted with R.

An advantage of using R is the fact that a large community of R users is very active on internet fora. Whenever
you face a problem, there is a good chance that someone has faced the same problem, solved it, and posted
the solution on the internet. There is also a large range of books dealing with several aspects of R. Some of
these books can be downloaded for free (from computers within the UGent network). Check the Use-R books
from the Springer publishers (http://www.springer.com/series/6991) for a good starting point. The current
notes are based on the book “Biostatistical Design and Analysis using R. A practical Guide” by Murray Logan.

This chapter is meant as an introduction to work with R, the possibilities of the package and some important
functions needed for data exploration. You will also learn how to do mathematics that are usually done in MS
Excel. Using several examples, you will get familiar with working in R, but we do advice you to practice a lot,
maybe even with a self-made dataset. Later on, the commands that are introduced here will be considered as
general knowledge.

When R is already installed on your computer, you can skip this part. If not, you will need to install it via:
http://www.r-project.org/

To start R from a Windows environment, click the blue “R” icon on your desktop, or use start => programs.

You see a screen with some text, and a “>” on the last line. This window is the R console. The last line is the
command line, where commands will be entered. A command is executed by typing it at the command line and
pressing “enter”. Now it should be clear: R-GUI is not a GUI!

Typing commands at the command line can lead to typing errors, or very unstructured scripts (the collection of
commands needed to perform a task). Therefore, we use a script-editor to enter the commands. R has a build-
in script editor, that can be activated by File-New Script or Ctrl+n. This command opens a new window that can
be arranged next to the R console. Commands can be typed in the editor, and sent to the console via Ctrl+r, or
using the Run icon. The command will be executed by R.

Recently, R Studio became a better alternative. R Studio integrate the R console in RStudio, and offers the
possibility for direct inspection of created plots. You can download R Studio from http://www.rstudio.com/
(Mac and Linux users will first have to install R before installing R studio). A screenshot of RStudio is below. The
upper right window is the text editor. Here you can type text, edit text, copy and paste...In short, you can use it
as word processer to write code. However, code cannot be executed in the editor, you need to send it to the
console, where it will be executed. If the result is a graph, you can see it in the lower right window (check
“Plots” tab), when the results is not a graph, it will be in the console. The upper right window provides

information about the items you are working with (Workspace tab), or provide an overview of what you have
been doing (History tab).

Code View Piots Session Build Debug Tooks Help

e-&- B8 + & project (Nane)
) Uniitled1 x| §) Scriptmultivarr* % ©] loopbandr % 1 Environment History =0
B [Clsowrcaonsae Q /- #Rm 2% FSource = + & _#wmpontDatasets Liste
13 = & clobal Erwironment =
14 #écluster an: t euclidean distances: geeft zelfde resultaat =
4 % Tength_glucfarmac int [1:4(1d)1 6 6 6 6
15 data?-data/rowSums (data o
16 reuc-vegdist{data?, "euclidean”) L num [1rACLA)] 9. 857 35,5 8:67- 3467
Bll ¢ Tos. reutaheluc L eouii,. Fadbra e nietnarmaal num (1:30] 15 6 8 5 4 100 55 588 1 ...
18 ploticlus.reuc, hang- 1 overleving.log num [1:24] 3.76 3.61 4.04 2,94 3.33 ...
19 2 Opca List of 10
2 . " rand.sample int [1:500] 403 915 893 158 30 137 632 881 364 268 ...
g% s ; et . MR i reuc Class 'dist' atomic [1:300] 0.0564 0.1052 0.0768 0.0397 0.1429
5 =d.gluc num [1:4(1d)] 18.8 19.8 21.4 14 =
24 data2-datas0.25 —
25 data? Files Plots Packsges Help Viewer =0
8 s P zom Beppons O “&- publish
27 dea2-decoranaidata?)
28 summary(dca?) ##aslengte eerste as<l.5, dus PCA
29
30 ##PCA doen
31 pea- rdaldata?
32 summary(pca)
33 plotipca) @ 2000m_3
34 & LLLE]
30:11 (Top Leved < R Scipt & e
o 200004
Conpale: - Ondeswifs/Bostatistic/20 amen_biologie 20 -0 10m.8 2000m_1
100m 4 -1.1091 -0.40602 -0.9378 1.6112 4.88073 0.19181 = fom_ 4 20008, 5
100m 5 -1.0651 0.10248 -0.2940 -0.1874 2.39495 0.09581 1oma
500m_1 -0.1701 -1.21985 2.1575 -0.8513 0.31421 -1.56791 %57 = o
500m_2 -0.3192 -1.01486 0.2331 -1.4615 0.63077 0.02431 £ —
500m_3 -0.3715 -1.70816 0.7807 -0.3799 -0.93697 -0.74871 a s D62 4 o
500md -0.1135 -0.77834 1.3005 0.8398 -1.11235 -0.03141 o N et
500m_5 -0.1422 -2.08324 -1.0308 0.9823 -0.33300 -1.36051 n LF
1000m_1 1.0255 -2.19061 2.6240 -0.6570 0.02999 1.92806 vk Toom.4 acp
1000m_2 0.9389 -1.58554 -2.6262 -2.3110 -0.72618 0.60228 04 g
1000m_3 1.0086 -1.85080 -1.6005 -2.1047 0.84128 2.32815 =] 500m_ ¥
1000m_4 0.8569 -1.43454 0.7271 1.7236 -3.52524 1.20381 S i
1000m_5 0.9202 -2.10612 1.5876 1.8380 -0.22073 -2.50413 wons T
2000m_1 2.4039 1.88535 -1.2326 4.4646 -0.07959 0.25919 o -
2000m_2 2.3405 0.18365 -4.2900 -0.3436 -0.52214 -0.09474 ¥ SOOmE 198381
2000m_3 2.5469 3.11076 2.1080 -2.1947 -0.12456 0.42336 T T T T
2000m 4 2.6733 2.16923 1.8577 -0.7561 1.63583 0.90347
200005 2.1735 1.51146 -0.2396 0.3531 -0.07566 -2.42876 4 2 0 2 4
> plot(pea) PC1

2.3 R as a calculator

R can be used as a regular calculator. Type the following commands:

45 + 23

3 * 6

372 4+ 2 * (1 - 0.2)

sqrt (9)

exp (2)

sin(0.3)"2 + cos(0.3)"2

62570.25

1ogl0(1000)

log (1000, 10) #same as 1logl0(1000)
1log (1000) # natural logarithm
exp (2) # natural exponential function e*
log (exp(3))

VVVVVVVVYVYVYVYV

Transforming numerical data:

square root

modified square root transformation

the natural log of x

log base 10 of x

exponential of x

absolute value of x

arcsine square root (used for proportions)

> sqrt (x)
> sqrt (x+0.5)
> log(x)

> 1loglO0(x)
> exp (x)

> abs (x)

> asin(sqgrt(x))

HE S S S S S e

Be careful! R is case-sensitive!

Everything within R is an object. A number is an object, a variable is an object, output is an object...Objects
need to be given a name in R. Names can consist of virtually any sequence of letters and/or numbers, provided
that

- names start with a letter (i.e. “A1” is a valid name, “1A” is not a valid name)

- names cannot contain following symbols: space, , -+ * /# % & []1{} ()~

It is not a good idea to use names that are also commands in R. This can cause confusion, both for R and for the
user. As names have to be typed, using long names can lead to typing errors, typing effort and loss of time (i.e.
shorten “temperature” as “temp”). Keep in mind that you need to remember the meaning of a name. When
you need to transform the variable temperature, a good name could be log.temp or LogTemp. In most

“won

examples and text books, the “.” sign is used.

An example:

>VAR1 = 2+3 #the expression (2+3) is allocated to the object VAR1

>VAR1 #this command calls the value of the object with the name VAR1
[1] 5 R evaluated the expression, and returns the output

“_n

Remark: expressions can be allocated to objects using
examples on the WWW)

(this course) or using “<-” (many text books or

Objects can be used for calculations:

>VAR1-1 # substract 1 from the value of object VAR1
>[1] 4 output

A vector is a collection of objects of the same type. All objects within a vector are numerical, text...Vectors can
be created using the concatenate (c) function.

> VAR2=c (2,4, 6) # creates a vector containing the numerical objects 2, 4 en 6
When vectors consist of numerical objects, vectors can be used in calculations:

> VAR2*2 # multiplies all objects of the vector VAR2 by 2
[1] 4 8 12

Vectors are the basic unit for data storage in R. Vectors can be seen as columns with a length equaling the
number of rows in the column. The different types of vectors that can be used in R are listed in the following
table:

Vector class Example
Integer > 2:6 # vector of integers from 2 to 6
(whole numbers) [1] 2 3456

> c(1,3,9,12) # vector of integers

[1] 1 3 9 12

Numeric > c(8.4, 2.1) # vector van real numbers

(Real numbers) [1] 8.4 2.1

Character > c('A', 'ABC') # vector of letters

(letters) [1] "av "ABC"

Logical > c(2:4)== # evaluate the expression

(TRUE or FALSE) [1] FALSE TRUE # the printed logical vector
FALSE

Biological data mainly consist of numbers (i.e. temperature data) or text (list of stations in which temperature
was measured). Therefore, this course will mainly deal with integer, numeric and character vectors.

2.4.2.1. Creating vectors

Vectors can be created fast using “clever commands”. In practice, these commands are not going to be used
frequently in this course. We start with creating a vector consisting of all integer numbers from 10 to 18
(including 18):

> VAR1=10:18

> VARI1

[1] 10 11 12 13 14 15 16 17 18

Note: the previously made vector VAR1 is now replaced by the newly created vector VAR1

Numerical sequences can be obtained through the seq() function:

> VAR2=seq (from=2, to=16,by=4) creates a sequence from 2 to 16, with interval 4
> VAR2
[1] 2 6 10 14

Or shorter:

VAR2=seq (2, 16,4)

Using seq(), the length of vector can be defined when the function is fully written:
> VAR2=seq (from=2, to=16, length=5)

> VAR2
(1] 2.0 5.5 9.0 12.5 16.0

This creates a vector with 5 numbers (numeric objects), spread evenly over the interval 2-16.
When sequences need to be repeated, the rep() function can be used:

> VAR=rep (4, 5) creates a vector containing the number “4” 5 times
> VAR
[1] 4 4 4 4 4

> VARl=rep ("station", 5) creates a vector containing 5 times the text “station”
> VARI1
[1] "station" "station" "station" "station" "station"

“n

Note: text is entered between the “ ” signs. R does not recognise text not enclosed in “ ”.

> VAR2=rep (c ("yes","no"),5) Repeat”yes” “no” 5 times in this order
> VAR2
[1] "yesll "no" "yesl' "nO" "yeS" "noﬂ "yeS" "noll "yesll "nol'

Note: in this case, one function (the c-function) is nested within the rep function. The inner function is executed
first (i.e. creating the “yes” “no” sequence), and is repeated 5 times.
2

3

(4,5)) repeat 2 four times, and 3 five times> VAR3

I4

> VAR3=rep(c(2,3),c (4
(11 2 2 22 3333
Biological datasets are not only characterized by numbers, text (i.e. station names) needs to be stored in
vectors as well. This is done in character vectors. As mentioned before: R only recognizes text when it is
between “”.

Suppose an investigator noted the presence of plant species in 10 quadrants, and measured temperature as
well.

De vector containing the station names can be made as:

StationS: C("Ql", "QZ", "Q3H, "Q4","Q5"’"Q6","Q7H,"Q8",HQ9","Q10")
> Stations
[l] llQlll HQ2" "Q3'I "Q4ll IIQSH "Q6" IIQ7" llQ8ll HQ9" "QlO"

This is time consuming, and it is far more elegant to use the paste function. This function combines the
separate parts (i.e. Q and 1) of the object name in one single name (Q1). The paste function consist of three
parts: (1) the first part of the combination; (2) the second part of the combination and (3) the separator. If we
need to combine Q with a number between 1 and 10 and without a space in between the Q and the number,
we use

> Stations=paste ("Q", 1:10,sep= "")
> Stations
[l] llQ 1" llQ 2" llQ 3" llQ 4" llQ 5" llQ 6" llQ '7" llQ 8" llQ 9" llQ 10"

By combining functions, complicated vectors can be made fast. Next example shows how a vector is created,
which consists of 5 stations (A till E — using the LETTERS function) which are sampled twice. Replicates should
be after each other in the vector, and station name and replicate number should be separated by a “_" sign:

> New.Stations=paste (rep (LETTERS[1:5],each=2),1:2,sep="_")
> New.Stations
[l] llA_l n HA_2 " " B_l n n B_2 " llc_l " n C_2 n n D_l " AL D_2 n n E_l " IIE_2 "

2.4.2.2. Special vectors

Data in biological datasets are often coupled, and the correct link needs to be specified to allow later analyses.
We go back to the example of the researcher measuring temperature in 10 quadrants. Half of these quadrants
were shaded; the other half was not shaded. Temperature is stored in the vector temp:

temp=c(10.2,11,13,12.3,14,22,23,21.5,23.6,22.1)
The information about the quadrants is stored in the vector Stations (see above)
> Stations

[l] "Q 1" "Q 2 " "Q 3" HQ 4 " uQ 5 " IIQ 6 " IIQ 7" "Q g " "Q g "
HQ 10 "

The first five quadrants were not in the shade, the last five were. We store this information in the vector
shadow

> shadow=rep (c("no","yes"), each=5)

> shadow
[l] Hnoll Unoll llno" HnO" "nO" "yesll "yesll "yesll "yesll "yesll

10

When calling the vector temp we have no idea about the link between temperature and the quadrant in which
the temperature was measured. We can solve this, by linking the elements of the vector temp to the codes of
the quadrants using the function names():

> names (temp)=Stations

> temp

Q1 Q 2 Q3 Q 4 05 Q 6 Q7 o 8 Q9 Q10
10.2 11.0 13.0 12.3 14.0 22.0 23.0 21.5 23.6 22.1

Now, every observation is coupled with its corresponding quadrant.

We could test statistically whether the temperature is significantly different between quadrants that are
shaded, and the other quadrants. To do this, we need to “explain” to R that the text “yes” and “no” are actually
two factors. This is done using the function factor()

> shadow=factor (shadow)

> shadow

[1] no no no no no yes yes yes yes yes
Levels: yes no

The content of the vector shadow is no longer text (the output is no longer between “”). R treats the vector as
a numeric vector with values 1 and 2 (2 levels), where 1 codes for “no” and 2 codes for “yes”. This allows the
user to perform statistical tests. Other, shorter methods to create factors include:

shadow=factor (rep(c ("no","yes"), each=5))
or

shadow=gl (2,5,10, c("no","yes"))

The input for the function gl() consists of the number of levels (here: 2), the amount of replicates (here: 5), and
the factor labels (the concatenation of “no” and “yes”).

All these different kinds of vectors can be merged in a single data frame that will be used in the final analyses.

Vectors only have 1 dimension: length. For certain purposes, it can be useful to transform vectors to matrices
with dimension length=length of the columns, and dimension width=number of columns.
We transform the vector “temp” to a matrix with 5 rows (“nrow=5") using:

> matrix (temp, nrow=5)

(11 [,2]
(1,1 10.2 22.0
[2,] 11.0 23.0
[3,]1 13.0 21.5
[4,] 12.3 23.6
[5,] 14.0 22.1

By default, matrices are filled by columns. If you need to fill a matrix by rows, you need to add “byrow=T" to
the expression.

Matrices can be created based on different vectors, when these vectors have the same length. Suppose the X
and Y coordinates of 5 stations are stored in 2 dedicated vectors:

> X=c(16.92, 24.03, 7.61, 15.49, 11.77)

> Y=c(8.37, 12.93, 16.65, 12.2, 123.12)

> XY=cbind (X, Y) cbind: merge as columns
> XY

11

X Y

[1,] 16.92 8.37

[2,] 24.03 12.93

(3,1 7.61 16.65

[4,] 15.49 12.20

[5,1 11.77 123.12

> XY=rbind (X, Y) rbind: merge as rows
> XY

(.11 [,21 [,31 [,4] [,5]

X 16.92 24.03 7.61 15.49 11.77
Y 8.37 12.93 16.65 12.20 123.12

Lists are used to store objects of different length. As an example: we obtain data at 5 stations, we obtain 2
replicate measurements per station. As such we get 10 sample names (A1-A2-...-E1-E2), 10 values for the
observations, but only 5 geographical X coordinates and 5 geographical Y coordinates (1 X and 1 Y value for
each station). This results in 2 vectors of length 10, and 2 vectors of length 5. These vectors can be combined
using the list() function.

2.4.4. Data frames

For the analyses of biological data, data are mainly stored in data frames. Data frames are used to store vectors
of the same length. The vectors can be numeric or character vectors.

2.4.4.1 Creating data frames

Data frames can be created based on existing vectors. In this example, we use the vectors that were created
before. The vectors are merged in the data frame with the name dataset, using the command data.frame():

> Stations=paste ("Q", 1:10,sep= "")
> shadow=gl(2,5,10, c("no","yes"))
> temp=c(10.2,11,13,12.3,14,22,23,21.5,23.6,22.1)
> dataset=data.frame (Stations, shadow, temp)
> dataset
Stations shadow temp
1 01 no 10.2
2 Q2 no 11.0
3 Q3 no 13.0
4 Q4 no 12.3
5 Q5 no 14.0
6 Q6 yes 22.0
7 Q7 yes 23.0
8 Q8 yes 21.5
9 Q9 yes 23.6
10 Q10 yes 22.1

We see that vectors are treated as columns in a data frame. The order in which the vectors are incorporated in
data frame () is important. Dataset=data.frame(shadow, temp, Stations) will generate a different data frame.
As we are now working with the data frame, it is important to remove the original vectors from the workspace
to avoid confusion (both for the user and R). This can be done using rm().

> rm(Stations, shadow, temp)

Vectors within a data frame can be called by data frameS$vector. We can call the vector temp from the data
frame dataset with the command

12

> datasetS$Stemp
[1] 10.2 11.0 13.0 12.3 14.0 22.0 23.0 21.5 23.6 22.1

However, this takes a lot of typing. Using the command attach(), we can call vectors by their names.

> attach(dataset)
> Stations
[l] llQlll "Q2ll "Q3" IIQ4II "Q5" IIQ6" "Q7" IIQ8" "lel "QlOll
Note: this approach is often discouraged in textbooks, because it can cause confusion with the original vector
names. Therefore, it is very important to remove the original vectors.

In many cases, data frames are not created within R. Datasets can be opened by R as “.txt" or “.cvs’ files. These
files are not default created by e.g. excel. However, using “save as — text (Tab delimited)”, .txt files are saved
easily in excel and other software packages. The first row needs to contain the vector names, data should be
arranged below. In the first column, rownames can be added, but cell A1 needs to be empty. R only recognises

.” as a decimal sign! Fields containing “,” will be recognised as text. For this course, files are mainly provided
as .txt files, or they should be created in excel.

R searches for data in its working directory. Using getwd() you can check the current working directory. In
most cases, the file you need to work with is not in the actual working directory. You can change the working
directory with setwd(“C:/...) and you need to specify the path to the folder where the file is stored.
Alternatively, you can use ‘File-Change Dir” from the R console to browse to the correct directory.

You can specify the working directory in several ways in RStudio. All of them can be found under “Session —
Working Directory). You can browse to the directory (“Choose Directory”), or set the active directory in the
“Files” pane as working directory. Alternatively, you can set the working directory as the location where you
saved the script (“to source file location).

On Minerva/Zephyr, you can find the datafile “gluc.txt”. This file contains data from an experimental treatment
of mice. Mice were treated with adrenaline or saline. Half of the mice within each treatment were infected
with pertussis (whooping cough). The concentration of glucose in the blood, and survival of the mice was
measured.

Download this file, and point R to the correct working directory. To open the file in R, you need the command
read.table(). In the argument, we add the name of the file, and we add the expression “header=TRUE” to show
that the first row contains the column names.

> gluc=read.table ("gluc.txt", header=TRUE)

> gluc
farmac bact glucose survival food

1 sal P 163 43 11
2 sal o) 157 37 23
3 sal o) 177 57 24
4 sal o) 139 19 12
5 sal o) 148 28 34
6 sal o) 144 24 32
7 sal n 330 5 41
8 sal n 302 2 23
9 sal n 283 1 14
10 sal n 273 9 12
11 sal n 307 3 34
12 sal n 279 2 32
13 adr P 94 78 31
14 adr o) 109 50 42
15 adr o) 146 30 12
16 adr o) 141 25 23
17 adr o) 124 10 21

13

18 adr o) 114 2 24
19 adr n 221 6 43
20 adr n 200 9 23
21 adr n 233 10 33
22 adr n 180 12 11
23 adr n 198 16 12
24 adr n 213 6 12

> attach (gluc)
We now opened the data frame, we inspected it (Gluc) and we made sure we can call the vectors by their name
(attach(Gluc)).

2.4.4.3 Selecting parts of data frames

Sometimes, calculations should only be done on parts of the dataset. We need to select these data (in R
terminology: indexing) using the command data frame[row, column]. We mention the rows and/or columns to
be selected between [].

> glucl[2,]
farmac bact glucose survival food
2 sal P 157 37 23

We selected the second row. Selecting the third column is achieved by

> glucl, 3]
[1] 163 157 177 139 148 144 330 302 283 273 307 279 94 109 146 141 124
114 221 200 233 180 198 213

Selecting the values from the second and fourth row, from the first and third column:

> gluc[c(2,4), c(1,3)]
farmac glucose

2 sal 157

4 sal 139

We will now select the data for which the glucose concentration exceeds 200

> gluc[glucose>200,]
farmac bact glucose survival food

7 sal n 330 5 41
8 sal n 302 2 23
9 sal n 283 1 14
10 sal n 273 9 12
11 sal n 307 3 34
12 sal n 279 2 32
19 adr n 221 6 43
21 adr n 233 10 33
24 adr n 213 6 12

In some cases, the use of the subset() command provides a more elegant solution to a selection problem. The
argument for this function consists of three parts : subset data frame, subset=,select=), only the first part is
obligatory.With “subset”, rows are selected, “select” is used for column selection. To select the columns
“farmac”, “bact” and “survival” from the data frame gluc, and to store this selected information in a new data
frame glucl, we use:

> glucl=subset (gluc, select=c("farmac","bact","survival"))

> glucl
farmac bact survival
1 sal o) 43

14

2 sal o) 37
3 sal o) 57
4 sal o) 19
5 sal P 28
6 sal o) 24
7 sal n 5
8 sal n 2
9 sal n 1
10 sal n 9
11 sal n 3
12 sal n 2
13 adr o) 78
14 adr o) 50
15 adr o) 30
16 adr o) 25
17 adr o) 10
18 adr o) 2
19 adr n 6
20 adr n 9
21 adr n 10
22 adr n 12
23 adr n 16
24 adr n 6

Here, we did not use the subset argument to select rows as we wanted all rows to be included in the new data
frame.

To select all columns (hence, we do not use the ‘select’ argument) with the values for those mice treated with
saline, we use:

> gluc.saline=subset (gluc, farmac=="sal")
> gluc.saline
farmac bact glucose survival food

1 sal o) 163 43 11
2 sal o) 157 37 23
3 sal P 177 57 24
4 sal o) 139 19 12
5 sal o) 148 28 34
6 sal o) 144 24 32
7 sal n 330 5 41
8 sal n 302 2 23
9 sal n 283 1 14
10 sal n 273 9 12
11 sal n 307 3 34
12 sal n 279 2 32

Subsets with only saline and pertussis:

gluc.sal.pert=subset (gluc, farmac=="sal" & bact=="p")
gluc.sal.pert

Rows and columns are selected using:

> gluc.s2=subset (gluc, farmac=="sal", select=c ("bact","survival"))
> gluc.s2

15

2.4.4.4 Calculations with data frames

Very often, transformation of data is required before an actual analysis can be performed. Then we need to do
calculations on parts of the data frame, and we need the result of this calculation to be added to the data
frame. As an example: we need to log-transform the data in the vector survival, and the new data should be
added to the data frame:

> log.survival=log (survival)
> gluc=data.frame (gluc, log.survival)

> gluc

farmac bact glucose survival food log.survival log.survival.l
1 sal o) 163 43 11 3.7612001 3.7612001
2 sal P 157 37 23 3.6109179 3.6109179
3 sal P 177 57 24 4.0430513 4.0430513
Or shorter:

>gluc$log.survival=log (survival)

It is frequently convenient to get information about the distribution of the data. This can be obtained using the
command summary(). Between (), you can specify a data frame or a vector.

> summary (gluc)

The commands mean() and sd() are used to calculate the mean and the standard deviation, respectively. This
can only be done with numeric vectors. In order to prevent error messages as a result of the sd() function, the
vector needs to be specified.

> mean (glucose)

[1] 194.7917
> sd(glucose)
[1] 69.48818

Actually, it doesn’t make sense to calculate the average glucose concentration in the blood, as the mice were
subjected to different treatments. If we are interested in the mean concentrations per group of treatments, we
could make subsets and calculate the mean and standard deviation for each subset. However, this is time
consuming and this can be avoided using the tapply() function. This function allows the execution of a function
for each level of a factor. There are three arguments associated with tapply(): the vector for which we need to
apply a function, the factor and the function that needs to be executed (tapply(vector, factor, function)). If we
are interested in the average glucose concentration in the blood of the mice subjected to the different
infection treatments, we use

> tapply(glucose, bact, mean)

n P
251.5833 138.0000

If we need to calculate the mean concentration for each infection-farmac combination, we apply
> tapply(glucose,bact:farmac, mean)

n:adr n:sal p:adr p:sal
207.5000 295.6667 121.3333 154.6667

2.4.4.5 Calculation of the standard error

R does not have a standard function to calculate the standard error of a mean. The standard error is calculated
as the standard deviation/square root (number of observations). This takes a few steps in R. We use the
function length to retrieve information about the number of observations.

16

> sd.gluc=tapply(glucose, bact:farmac, sd)

> number.observations=tapply(glucose, bact:farmac, length)
> se=sd.gluc/sgrt (number.observations)

> se

n:adr n:sal p:adr p:sal
7.671375 8.754681 8.073276 5.707695

R is a strong graphical programme, because graphs are highly adaptable to the user’s aim. Several packages
allow creating very specific graphs and a lot of websites gather scripts for specific graphs.

Advanced users usually use the ggplot2 package to create graphs. There is a lot of information on ggplot2
available on ggplot2.org and in the “Cookbook for R” (www.cookbook-r.com/).

A frequently used function is plot(), which can be further defined by adding arguments between the brackets.
First, we have to define what has to be plotted: plot(x,y) will plot the values of vector x on the x-axis and the
values of vector y on the y-axis. The same result is obtained with plot(y~x) (read as: plot y as a function of x).
We will plot survival as a function of the glucose concentration as:

> plot (survival~glucose)

The output does not appear in the R console, but in a new window (R Graphics). Whenever a new plot is
created, the previous one is overwritten. If a plot has to be saved, you can add a new R graphics window by
writing the command windows(). The plot looks like this:

80

averleving
40
1

100 150 200 250 200

glucose

The x — and y axes get a standard title, which corresponds with the name of the vectors that are plot. With the
arguments xlab = “...” and ylab = “...” you can add a better title to the axes.

> plot (survival~glucose, xlab="glucose concentration(mg/l)", ylab="survival
(days) ™)

The character size can be adapted with cex (character expansion). Titles of axes can only be adapted using
cex.lab. Try next command and look at the table below for more details

17

> plot (survival~glucose, xlab="glucose concentration (mg/1)",
ylab="survival (days)", cex.lab=1.5)

Table 5.3 Character expansion parameters.

Parameter Applies to

cex All subsequent characters
cex.axis Axes tick labels
cex.lab Axes titles

cex.main Main plot title
cex.sub Plot sub-titles

A general title can be added with main = “...”. Add the general title “SURVIVAL” by:

> plot (survival~glucose, xlab="glucose concentration (mg/1)",
ylab="survival (days)", cex.lab=1.5, main=" SURVIVAL ")

The scale of both x — and y axes was defined by R. It can be adjusted with xlim=c(minimum,maximum) and
ylim=c(minimum, maximum). We will set the scale of the y-axis between 0 and 120 by:

> plot (survival~glucose, xlab="glucose concentration (mg/1)",
ylab="survival (days)", cex.lab=1.5, main="SURVIVAL", ylim=c(0,120))

The symbols in the plot can be changed by pch=number, in which the number codes for a symbol. The most
frequently used symbols and their codes are mentioned in the table below:

n@ =0 =@ =A =y
@ A e @ wue
WX e e Wy sl
AVARD (D Y s

(D) 2& 3+ 4 50

Fig 5.2 [Basic peh plotting symbols,

We will change the plot symbols to black circles (code 19) by:

> plot (survival~glucose, xlab="glucose concentration (mg/l)", ylab="survival
(days)", cex.lab=1.5, main="SURVIVAL", ylim=c(0,120), pch=19)

We get this figure:

18

OVERLEVING

100 120
1 1

80

overleving (dagen)
40 80
|

20

100 150 200 250 300
glucoseconcentratie (mg/l)

You can choose not to work with data points, but with lines (type = “I”’), or with a combination (type = “b”). The
line type can be adjusted with Ity = number, and the thickness of the line is indicated by lwd = number. The
table below summarizes the most frequently used options:

Table 5.4 Line characteristics.

Parameter Description Examples

1ty The type of line. Specified as either
a single integer in the range of
| to 6 (for predefined line types)
or as a stning of 2 or 4 numbers
that define the relative lengths
of dashes and spaces within a
repeated sequence.

lwd The thickness of a line as a

multiple of the default thickness
(which is device specific)

lend The line end style (square, butt or
round)
ljoin The style of the join between lines 1Jein=C 1join=1 1join=2

/N\ N\ N\

When a factor is plotted on the x axis, R will generate a boxplot by default. With col=number, colours in the
graph can be adjusted (this applies for all types of plots):

> plot (survival~bact, xlab="bacteria", ylab="survival (days)", cex.lab=1.5,
main="SURVIVAL", col=3)

19

QVERLEVING

overleving (dagen)
40 60 80
L L L

20
1

besmetting

2.5.2 Bar graphs

Bar graphs are frequently used in biology to plot a mean value and its standard error. R does not have a
standard function to plot error bars, so we will have to create the code ourselves. To do this, we use the
function arrows. In what follows, a bar graph will be created, then error bars are added and the final touch is
given to the graph.

First, we calculate the standard deviation (sd.gluc), the number of observations (observations), and the mean
(means.gluc). The standard error (se.gluc) is calculated for each combination of observations (using the tapply
command).

sd.gluc=tapply(glucose, bact:farmac, sd)
observations=tapply(glucose, bact:farmac, length)
se.gluc=sd.gluc/sqgrt (observations)

se.gluc

means.gluc=tapply(glucose, bact:farmac,mean)

vV V V VYV

The boxplot is created by:

> b=barplot (means.gluc, xlab="treatment", ylab="glucose concentration in
blood")

250
]

200
1

glucoseconcentratie in bloed
100 150
I I

50
1

rn:adr nsal pradr prsal

behandeling

20

Plot the error bars on the graph by:
> arrows (b, means.gluc+se.gluc,b,means.gluc-se.gluc, angle=90, code=3)

The graph is still not good-looking. We can change some settings by adding arguments to the command
barplot(). Using ?barplot, we can ask for information about the function barplot. By windows() we create a
blank new graphic window.

> windows ()

The bars exceed the scale of the y-axis. We can adjust this be calculating the minimum value of the mean-se
and the maximum value of the mean + se and scale the y-axis in between those values. We add “1” to these
values, to avoid that the error bars touch the limits of the graph.

> max=max (means.gluctse.gluc+l)

> min=min (means.gluc-se.gluc-1)

> b=barplot (means.gluc, ylim=c(min,max),xlab="treatment", ylab="glucose
concentration in blood")

Still, this does not look very nice: the bars exceed the limit of the y-axis and the x-axis is plotted in the bars. This
can be avoided by writing xpd=FLASE in the argument.

> b=barplot (means.gluc, ylim=c(min,max),xlab="treatment", ylab="glucose
concentration in blood", xpd=FALSE)

Or better:

> b=barplot (means.gluc, ylim=c(0,max),xlab="treatment", ylab="glucose
concentration in blood", xpd=FALSE)

o
a T
o
2
- &
ol
2
=}
=
2
'
5
s o [=
5 &
S
@
@
8
=
)
o
5 I
T T T T
Adr Sal Adr+Pert Sal+Per

behandsling

On the x-axis, we get as labels the names generated by R based on the original data frame. Because n:adr, n:sal
etc. are not very informative, we can replace these with labels we choose ourselves. When we do not want the
labels to be plotted automatically, we can use the argument axisnames = FALSE (or shorter: axisnames=F).

> b=barplot (means.gluc, ylim=c (min,max),xlab="treatment", ylab="glucose
concentration in blood", xpd=FALSE, axisnames=F)

A new x-axis is plotted with the command axis(). Since we want to create the x-axis, we use the argument “1”,
we point out where we want to plot the names (“at = b” or: take the coordinates of vector b) and we supply a
vector with the names).

21

> axis(l, at=b, labels=c ("Adr","Sal","Adr+Pert","Sal+Per"))

We now have an incomplete x-axis that can be adjusted by adding the lower part of a box to the graph
(box(bty="1") adds an incomplete box in the shape of an “L”).

We are satisfied with the lay-out of this graph, so we can add the error bars.

> arrows (b, means.gluc+se.gluc,b,means.gluc-se.gluc, angle=90, code=3)

While installing R on your computer, not all possibilities within R are installed, since that would occupy too
much space on your hard drive. You can load packages using library(), with between brackets the name of the
package that you would like to use. Lattice is a package that allows you to create graphs that cannot be created
with standard packages. Lattice is very much adapted to illustrate experimental data with a limited amount of
commands. Install the package lattice by

> library (lattice)

Now we would like to create a graph in which we plot the glucose concentration for each bacterial and
pharmaceutical treatment.

> bwplot (glucose~farmac | bact)

The vector following the “|” sign is the conditioning variable: for each level of this conditioning variable (in this
case bact and thus “n” and “p”) a graph will be created, in which the glucose concentration for each level of
“farmac” will be plotted.

" E:| |

,,,,,,,,

260 r

glucose
N
=]
=]
|
T

L R T}

100 ! F

Within “lattice” also other plots can be called. Try ?lattice for more information. Try also:

> xyplot (glucose~farmac | bact, pch=16, col=2)

Command lines that are written in the R console are lost upon closure of R. In R editor, Tinn-R or R studio, you
can save all commands as a script. A script has the advantage that you can add comments to your command
lines, preceded by #. R will ignore the text written following the “#” sign. You can run entire scripts in R without

22

receiving any error message. As explained above, it can take a while before you have finished the layout of your
graph. At first sight, it seems to take a lot of time to create graphs in R. However, once finished a script, you can
immediately re-use it with another dataset. Creating a graph for a thesis or a paper takes — per graph — less
time in another programme, but when you need a lot of (complicated) graphs, R scripts can save a lot of your
time. An example of a script (to create a bargraph with error bars) can be found below:

#script: creating bargraphs with error bars

gluc=read.table ("gluc.txt", header=T)

gluc

attach (gluc)

#calculate se

sd.gluc=tapply(glucose, bact:farmac, sd)
observations=tapply(glucose, bact:farmac, length)
se.gluc=sd.gluc/sqrt (observations)

se.gluc

means.gluc=tapply(glucose, bact:farmac,mean)

means.gluc

#calculate the minimum and maximum for the y-axis

max=max (means.gluct+se.gluc+l)

min=min (means.gluc-se.gluc-1)

#create barplot: xpd= FALSE necessary to keep bars within y-axis limits,
axisnames=F necessary to plot a nice x-axis

> b=barplot (means.gluc, ylim=c (min,max), xpd=FALSE, xlab="treatment",
ylab="glucose concentration in blood", axisnames=F)

#plot error bars on graph

arrows (b, means.gluctse.gluc,b,means.gluc-se.gluc, angle=90, code=3)
apply correct axis

axis(l, at=b, labels=c("Adr","Sal","Adr+Pert","Sal+Per"))

#add lower line

box (bty="1")

VVVVVVVVYVYVYVYVYVYVYV

\2

vV V V V VvV

2.7 Close R

When closing R, it is advisable to remove all objects from the working memory of the computer. You can call
for a list of all objects by:

> 1s()
Next, you put these objects in a list (list=Is()), that can be removed by the rm() command.

> rm(list=(1ls()))

2.8 Exercises

1. Imagine you have collected macrobenthic samples along a continental slope. Starting from a depth of
100 m and ending at a depth of 1500 m, you have taken two samples in every station. The samples
were taken at 100 m, 200 m ,300m, , 1500 m. All macrobenthic individuals were counted and you
have obtained the following dataset:

depth macrobenthos
100 2512
100 2412
200 2654
200 2102
300 2033
300 2000
400 1896
400 1923

23

500 1896

500 1523
600 1547
600 1546
700 1236
700 1248
800 1249
800 1023
900 1011
900 999
1000 915
1000 955
1100 947
1100 850
1200 848
1200 857
1300 800
1300 798
1400 745
1400 512
1500 517
1500 499

A) Make 2 vectors, containing this data and connect them in a data frame. Do this in R, not in Excel.
B) Make a graph in which mean macrobenthos density + standard error in function of depth is
shown. Give both axes a meaningful name!

Remark: by changing a vector to a factor vector, R will automatically call the levels alphabetically, and not in
the order in which the levels were original placed. Exp.: a vector “V=c(“low”,”medium”,”high”) will be shown in
a graph as “high, low,medium”. You can specify the order by:

”n

factor=factor(V,levels=c(“low”,”medium”,”high”)).

24

3 Descriptive statistics

Since it is usually not possible to work with data on entire populations, scientists use sample data. Every
element from the population has an equal chance to be included in the sample. Based on sample data,
statistics are used to make statements about the entire population. By means of statistical tests, it can be
assesses whether relations are random, or significantly different from random.

Based on representative sample data, a null hypothesis (Hy)is formulated. This H, states that there is no
relation between variables, or that groups of samples are drawn from the same population. By calculating a
test statistic (e.g. F (ANOVA), t (Student’s t-test)), and comparing the value of this test statistic with a relevant
theoretical distribution of this test statistic, we assess whether the calculation value can be obtained by
chance. If the chance of obtaining the calculated value is too small (e.g. <5% or p<0.05), we reject the null
hypothesis, and we accept a significant relationship between variables or a significant difference between
groups of samples.

In general, null hypotheses are rejected at a p-value < 0.05, or in other words: with a confidence of at least 95%
that the null hypothesis is false.

When the investigator knows the direction of a relation, or difference, one-tailed tests are applied. The chance
of obtaining a significant test statistic is only assessed at one side of the distribution of this statistic. However,
in most cases, this direction cannot be predicted, and two-tailed tests are used in which equal chances on
differences on the positive and negative sides of the theoretical distribution are assumed.

25

4 Formulas for statistical analysis

The first step in conducting statistical analyses is formulating a testable hypothesis. Following steps can be used
as a guidance:

1. Define the dependent variable(s). These are the variables of interest, for which you want to test the
distribution. In ecological research, dependent variables are often densities, diversity indices, biomass
values...

2. Define the independent variables. Generally, one wants to describe the independent variable (e.g.
densities) as a function of (a number of) independent variables (e.g. environmental variables: salinity,
temperature, presence of food sources, presence of disturbances, sediment variables...)

3. Define whether interactions between independent variables should be taken into account (e.g. asin a
2 Way ANOVA)

4. Write down the formula. Using R (but valid for the bulk of statistical software programmes), we use a
structure that can be generalised as:
>Y~f(A,B,...)

At the left hand side of the ™', we write the dependent variables, at the right hand side we write the
independent variables and their possible interactions. If interactions are not considered (e.g. in a
linear regression), the formula looks like:

>Y~A+B+C

When interactions are considered important as well, this can be written as:
>Y~A+B+A:B

or, in short:
>Y~A*B

When only the interaction effect is considered, the formula becomes
>Y~A:B

When B is nested in A (e.g. B only makes sense as part of treatment A, then the independent effect of
B is not considered, and only the interaction with A is investigated:
>Y~A+A:B

or, in short:
>Y~A/B

Both dependent and independent variables can be continuous, or discrete (e.g. factors: “Disturbed”,
“Undisturbed”). This is important for deciding on the correct statistical approach (regression analysis,
ANOVA...). When the dependent variable is multidimensional, we use multivariate techniques
(ordination, MDS). However, the structure of the formula does not change.

26

5 ANOVA

Analysis of variance or ANOVA is used in order to test if there is any difference for a dependent variable
between groups. We use the dataset Gluc as example. We want to identify is there is any difference in survival
between mice with an adrenaline-injection and mice with a saline-injection. Further we want to know if there is
an effect of a pertussis-infection on survival and if the pertussis influences the effect of the adrenaline-
injection.

Three assumptions have to be fulfilled before we can apply ANOVA (1). all subsets of the data needs to be
normally distributed, and (2). the variances are homogeneous.

If one of the assumptions is not fulfilled you have to apply a transformation. If that still does not help, you have
to use a non-parametric alternative test.

Before testing the assumptions, it is useful to perform an exploratory data analysis. From the graphs produced
in sections 2.5.2 and 2.5.3, it seems like the survival of mice is influenced by pertussis, possibly in combination
with the adrenaline treatment. One of the graphs was made using:

>library(lattice)
>bwplot (glucose~farmac | bact)

300 + r

280 7 r

i
200 L
:

,,,,,,,,

we E:' [

glucose

100 ! F

In addition, we can make a graph to investigate the relation between the means and the variances. When a
positive relation between means and variances (in other words: a higher mean value is associated with a higher
variance) is detected, a transformation is often needed to meet the assumptions.

Means can be calculated using the command mean(), variances are obtained using var(). Since we need to
calculate means and variances for each possible combination of treatments, we could create subsets, calculate
means and variances, and assign these values to two vectors. This is however time consuming. A more elegant
solution is provided by the function tapply().

The means and variances for the variable survival and the grouping variables farmac and bact can be calculated
using:

= tapply (Gluc$survival, GlucSfarmac:GlucSbhact, mean)
= tapply (GlucSsurvival, GlucSfarmac:Gluc$Sbact, var)

vV Vv Vv
398
|

27

adr:n adr:p sal:n sal:p

9.833333 32.500000 3.666667 34.666667
> v

adr:n adr:p sal:n sal:p
14.566667 775.100000 8.666667 195.466667

The correlation between means and variables is obtained through a graph that can be produced using

> plot(v ~ m)

800
1

600
1

v
400
1

200
1
o

5 10 15 20 25 30 35

The variance does not increase when the mean increase: the highest mean value is not associated with the
highest variance. To confirm the absence of a correlation, we use

> cor.test (m, V)
Pearson's product-moment correlation

data: m and v
t =1.4237, df = 2, p-value = 0.2905
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
-0.7909135 0.9932778
sample estimates:
cor
0.7094608

We obtain a non-significant correlation (p=0.29) with a value of 0.7 (more information about correlation tests:
see further).

NOTE: it makes no sense to produce this graph, and calculate the correlation, when only two groups are
investigated. Means and variances are assumed to be independent in that case.

5.1.1 Normality of the data

Visually
With a QQ-norm graph (normal probability plot) we plot the data against a normal distribution with the same

mean and variance. If all the data are on one line they are normally distributed. The stronger the data deviate
from a straight line, the lesser they approach a normal distribution.

28

> ggnorm (Gluc$survival)
> gqgline (GlucSsurvival)

Normal Q-Q Plot

Sample Quantiles
40 60 80
! !

20

Theoretical Quantiles

This method is not quantitative but often recommended.
Shapiro-Wilk normality test

A quantitative test providing a p value is the normality test: a p < 0.05 indicates that the data are not normal
distributed. (Nul hypothesis: the data originate from a normal distribution)

> shapiro.test (GlucSsurvival)

Shapiro-Wilk normality test
data: Gluc$survival
W = 0.844, p-value = 0.001696

We have to test normality for all subsets (groups) of the ANOVA. Make subsets like shown in 2.13, produce the
qgplots, and apply the normality tests:

> ggnorm (Gluc.a$survival)
> ggline (Gluc.a$survival)

> ggnorm (Gluc.s$survival)
> ggline (Gluc.s$survival)

> shapiro.test (Gluc.aSsurvival)
> shapiro.test (Gluc.sSsurvival)

In case of a two-way ANOVA there are 4 groups to test for in this example:

shapiro.test (Gluc.apSsurvival)
shapiro.test (Gluc.anSsurvival)
shapiro.test (Gluc.spSsurvival)
shapiro.test (Gluc.snSsurvival)

vV Vv Vv Vv

An alternative method is to apply the function tapply() (see also help(tapply)):

attach (Gluc)

tapply (survival, farmac, shapiro.test)
tapply (survival, bact, shapiro.test)

tapply (survival, farmac:bact, shapiro.test)

vV vV Vv Vv

29

This function calculates a function (shapiro.test()) of a variable (survival for each group identified by a grouping
variable (farmac,...)

If none of the test results is significant, the data meet the assumption for normality.

The tapply() function cannot be applied in combination with ggnorm and ggplot. We can produce plots for
each subset, however this is time consuming. R allows the user to produce customised fuinctions. The general
syntax of a function is:

Name=function (argl,arg2,...) exprl

The functions has a name (Name), and executes an (user-defined) expression for the arguments considered
(argl, arg2...defined by the user). The next example describres a function producing qqgplots for all
combinations of groups:

> gqnorm.and.line <- function(x, ...) {
ggnorm(x, ...)
ggline (x)
}

The name of the function is ‘ggnorm.and.line”, the expression can be found between {}. The function needs to
be called by its name, and “x” should be replaced by the relevant argument. The command lines below will
result in 4 gqgplots, since we nest the function ggnorm.and.line within tapply(). In order to see the 4 plots in a

single window, we arrange the plots in 2 rows and 2 colums, using the par() function.

>par (mfrow = c(2, 2))
>tapply (glucSsurvival, glucSfarmac:gluc$Shact, ggnorm.and.line)

NOTE: if we use attach(), this can be written as:

>par (mfrow = c(2, 2))
>tapply (survival, farmac:bact, ggnorm.and.line)

The result looks like:

Normal Q-Q Plot Normal Q-Q Plot
© [2 @
o T w o |
2 2 @
E o4 1 E i
=1 e =1
a a g4
2z o | =
3 = =4)
: : :
[, B @ &
o
w o] =z
f T T T T = T T T T T
10 -05 00 05 1.0 10 05 00 05 10
Thearetical Quantiles Theoretical Quantiles
Normal Q-Q Plot Normal Q-Q Plot
< @
* =
w w w
2 2
I E o :
a o a = .
z z
5 = =4
: R
o] e] °
o™ - @ (]
o
o~ o,
T T T T T T T T T T
10 05 00 05 10 10 05 00 05 10
Thearetical Quantiles Theoretical Quantiles

In every plot, the data are close to the line, and we conclude that the data meet the assumption of normality.

30

5.1.2 Homogeneity of variances

The Levene test is used for testing if the variances of a variable (survival) are homogeneous for all groups
(adrenaline and saline). Install and load the package “car” (see section 2.15).

> library(car)
> leveneTest (GlucSsurvival, GlucS$farmac)

Levene's Test for Homogeneity of Variance
Df F value Pr (>F)

group 1 0.0519 0.8218
22

If p > 0.05, we can conclude that variances are homogeneous (= nul hypothesis). In order to test the
homogeneity of the variances in the subgroups of a 2-way anova, we combine the effect of farmac and bact:

> fb = Gluc$farmac:GlucS$bact
> levene.test (Gluc$survival, fb)

Levene's Test for Homogeneity of Variance
Df F value Pr (>F)
group 3 4.4997 0.01438 *
20

--- Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '." 0.1 " ' 1

5.2 t-test

In order to test if the means of two groups of data differ ot not, we can apply a Student's t-test. This test is
valid when the data are normally distributed, or when both samples are sufficiently large (at least 30 cases).

> t.test(survival ~ farmac, data = Gluc, var.equal = TRUE)

In this case the second variable, farmac has to be a factor with two levels. We assume here that the variances
in both groups are equal.

Note: When attach(Gluc) is used you do not need to indicate data=Gluc

5.3 F-test

> var.test (survival ~ farmac, data = Gluc, equal = TRUE)

5.4 ANOVA

Calculating an ANOVA in R consists of two parts: first we do a minimization (== to calculate mean and
variances) with the function aov(). In a second step the statististical significance and sum of squares are
calculated and placed in a table with the function anova() or the function Anova() from the package car.

The default function anova() in R will perform a type | (= sequential) sum of squares (SSI). This type is

dependent on the order that the independent variables are entered. In most case we want the type Ill (=
marginal) sum of squares (SSII1), which corrects for side effects, while SSlis only used for pure nested designs.

31

Therefore we use the function Anova() from the package car (Capital! !), which allows to calculate type Il and
type Il SS. In the case of a balanced design we obtain the same results with type I, Il or lll. In the case of
unbalanced designs, you have to be aware the use the correct SS. In that case use Anova() or drop1() for a type
111'SS

5.4.1 1-way ANOVA

In a one-way ANOVA, we use one 1 continuous dependent variable (survival), and 1 discrete independent
variable (farmac). We test the hypothesis that survival is not affected by the pharmaceutical treatment.

> x = aov(survival ~ farmac, data = Gluc)
> anova (x)

Analysis of Variance Table
Response: survival

Df Sum Sg Mean Sg F value Pr (>F)
farmac 1 24.0 24.0 0.0562 0.8148
Residuals 22 9393.3 427.0

> library(car)
> Anova(x, type = "III")

Anova Table (Type III tests)
Response: survival

Sum Sqg Df F value Pr (>F)
(Intercept) 5376.3 1 12.5918 0.001802 **
Farmac 24.0 1 0.0562 0.814783
Residuals 9393.3 22
Signif. codes: 0 '"***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

The function aov() applies the anova. The function Anova() gives a table with an overview of the results of the
anova: degrees of freedom , sum of squares, mean square, F-test, p-value. In the case of a one-way ANOVA
with two groups (sal and adr) the same results as in a t-test will be obtained.

The most important information to retrieve in these tests is the p- value Pr(> F). The p value provides the
probability dat the nul hypothesis can be accepted (no differences between groups). In most cases a 95%
confidence interval is used and is the nul hypothesis rejected if p <<0.05 . Here we can conclude that the
farmaceutical treatment has no effect on the survival of mice.

Task
Test the effect of the pertussis-treatment on the survival of mice. Formulate the correct hypothesis, make a

graph and give an interpretation of the test.

5.4.2 2-way ANOVA

For a two-way ANOVA the independent variable (e.g. farmac) is replaced by two independent variables
farmac*bact. "*" returns the variances within and between groups while "+" only looks within groups and ":"
looks between groups.

We test the hypothesis that survival of the mice is not affectd by the combination of both treatments (farmac
and bact)

> x = aov(survival ~ farmac * bact, data = Gluc)
> Anova (x, type="III1")

32

Analysis of Variance Table
Response: survival

Df Sum Sg Mean Sg F value Pr (>F)
farmac 1 24.0 24.0 0.0966 0.7591659
bact 1 4320.2 4320.2 17.3885 0.0004728 ***
farmac:bact 1 104.2 104.2 0.4193 0.5246671
Residuals 20 4969.0 248.4
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

First,we investigate the interaction effect. As p>0.05, we accept the hypothesis that the combination of
treatments does not affect survival of the moce. As this interaction term is not significant, we can explore the
one-way terms (e.g. farmac and bact independently).

We conclude that the pertussis infection has a significant effect on the survival of mice (“Hy: infection with
pertussis does not effect the survical of mice” is rejected). The pharmaceutical treatment has no effect on the
survival (“HO: pharmaceutical treatment has no effect on the surviva”l is accepted). The full interpretation of
this test is that mice infected with pertussis do not survive better or worse with an adrenaline treatment. We
can make a graph to find out whether the effect of pertussis is positive or negative.

5.5 Non-parametric tests

In the case the assumptions for ANOVA are not fulfilled (even not after transformation) you can go for a non-
parametric alternative. These tests require fewer assumptions, but they are also less powerful.

Two sample Wilcoxon test (alternative for a t-test) and k-sample Kruskal-Wallis Rank test (alternative for 1-way
ANOVA):

> wilcox.test (survival ~ farmac, data = Gluc)

Wilcoxon rank sum test with continuity correction
data: survival by farmac
W = 81.5, p-value = 0.6028
alternative hypothesis: true location shift is not equal to 0

> kruskal.test (survival ~ fb, data = Gluc)

Kruskal-Wallis rank sum test
data: survival by fb
Kruskal-Wallis chi-squared = 14.3988, df = 3, p-value = 0.002410

The results have to be interpreted in a similar way as the t-test and ANOVA: p is the probability to have a false
Ho, (no differences between groups).

When a dataset with two independent grouping variables cannot be analysed with a 2-way ANOVA because the
assumptions are not met, the use of a non-parametric alternative (PERMANOVA) can be a valid alternative.
PERMANOVA is based on distances in multivariate space, and can be done in R using the command adonis()
from the vegan package. However, PERMANOVA is out of the scope of the current course.

5.6 Post-hoc tests

When the F ratio of the ANOVA is higher than the tabulated vF value we can conclude that groups differ.
However when there are more than two groups to compare, we do not know yet which groups differ. It is not
recommended to perform multiple t tests because of the increasing risk of making type | errors. Therefore
there are alternative tests, such as the Tukey test.

> x = aov(survival ~ farmac * bact, data = Gluc)

33

> TukeyHSD (x)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = survival ~ farmac * bact, data = Gluc)
Sfarmac
diff lwr upr p adj
sal-adr -2 -15.42303 11.42303 0.7591659
Sbact
diff lwr upr p adj
p-n 26.83333 13.41030 40.25636 0.0004728

S’ farmac:bact’

diff lwr upr p adj
sal:n-adr:n -6.166667 -31.6380108 19.30468 0.9043471
adr:p-adr:n 22.666667 -2.8046775 48.13801 0.0921197
sal:p-adr:n 24.833333 -0.6380108 50.30468 0.0576493
adr:p-sal:n 28.833333 3.3619892 54.30468 0.0230019
sal:p-sal:n 31.000000 5.5286558 56.47134 0.0136906
sal:p-adr:p 2.166667 -23.3046775 27.63801 0.9950944

This test compares all groups pairwise. The result is a table with the differences between means (diff), and the
upper and lower boundaries of the 95% confidence interval. When 0 lies within the 95% confidence interval
(lower and upper boundary differ in sign), than the groups are not significantly different. Remark: the Tukey
test cannot be applied for a non-parametric test!

5.7 Exercises ANOVA

For each exercise:

1. Formulate Hypothesis

2. Create meaningful and correct graph

3. Perform analyses according to the hypothesis.
a. Test assumptions
b. Perform analysis and correct post-hoc when needed
c. Provide interpretation

Chicks

6 groups of chicks were fed on 6 different diets for several weeks. Is there a significant difference in weight due
to the diets ? Which diets give the best result?

> data (chickwts)

Plant growth

Plant growth is measured in 3 groups: two treatments and a control. Do the treatments have an effect on the
growth?

> data (PlantGrowth)

Poison
Test the effects of three different poisons and four different treatments on the survival of a group organisms

> data(poisons, package = "boot")

34

6 Correlation and regression

6.1 Correlation

An important step in data analysis is to determine whether there are (linear) relationships between variables.
In a first step, the relationship between variables can be investigated in scatterplot.

> pairs (Gluc)

The standard method for calculating a correlation between two variables is to determine the Pearson product
moment correlation. For this method, both variables should be normally distributed.

6.1.1 Test for normality

The normality of each variable is examined in the same way as for ANOVA (see 5.1.1.). When both variables are
normally distributed (possibly after transformation), Pearson correlation is used; in other cases, the Spearman
rank correlation should be calculated.

6.1.2 Parametric correlation: Pearson product moment

The correlation coefficient r indicates the strength of the linear relationship between two variables. The
coefficient of determination r? indicates the proportion of explained variance. When r = +1 or -1, a perfect
lineair model is obtained; when r=0 there is no linear model. To get an explained variance of more than 50%, it
is necessary to get an absolute R greater than 0.7 .

> cor (Gluc)
> cor (Gluc[3:5])
> cor (Gluc$survival, Gluc$glucose)

the function cor.test() provides more output:
> cor.test (GlucS$survival, Gluc$glucose)
Pearson's product-moment correlation

data: GlucS$survival and Gluc$glucose
t = -3.8258, df = 22, p-value = 0.0009214
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.8250908 -0.3069374
sample estimates:
cor
-0.6320725

We obtain a correlation coefficient of -0.63. As p<0.05, we obtain a reliable correlation.

NOTE: in case of small datasets, we can obtain less reliable correlation coefficients.

6.1.3 Non-parametric correlation: Spearman rank

The Spearman rank correlation is a widely applied non-parametric method. It will not investigate the actual
values but the relative order (ranks) of the data, and how that order differs between the two variables. Being a
non-parametric test, it is less sensitive, and thus it will be less likely you obtain a p value < 0.05. The

35

interpretation of r and r? is similar as for the Pearson product moment test. The "method" must be specified
explicitly in the formula. cor.test () gives more output

> cor (Gluc$survival, Gluc$glucose, method = "spearman")
> cor.test (Gluc$survival, GlucS$glucose, method = "spearman")
6.1.4 General remark correlation

Outliers: a single outlier can strongly influence correlation. Therefore it is best to combine correlation analysis
with visual inspection of the data.

Correlation does not imply causation: A correlation between two variables does not mean there is a causal
relationship. The variation in two variables can both result from a third, non-measured variable.

36

6.2 Regression
6.2.1 Simple regression

In simple linear regression, a linear relationship between a single independent variable X and a dependent
variable Y is assumed. The best fitting line through a cloud of data points is calculated. This is the line for which
the sum of the squared vertical distances (or squared residuals) from all points to the regression line, is
minimal. In other words, the residual are minimized. After the regression is performed, two assumptions need
to be tested:

1. no outliers

2. normal distribution of the residuals

Again, a transformation can help when the data do not meet the assumptions. If the residuals still do not meet
the assumptions after transformation, other types of regression can be used but these fall outside the scope of
this course.

We test the relationship between the survival of the mice (dependent variable) and the glucose concentration
in their blood (independent variable). In a first step, the regression is performed, and the results are stored in
the vector “x”. In a second step, the content of this vector is called.

> x = lm(survival ~ glucose, data = Gluc)
> summary (x)

Call:
Im(formula = survival ~ glucose, data = Gluc)
Residuals:

Min 10 Median 30 Max

-33.037 -9.559 -2.799 5.045 39.282

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 56.01974 9.92628 5.644 1.13e-05 ***
glucose -0.18406 0.04811 -3.826 0.000921 **x*
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'" 0.1 ' ' 1

Residual standard error: 16.03 on 22 degrees of freedom
Multiple R-Squared: 0.3995, Adjusted R-squared: 0.3722
F-statistic: 14.64 on 1 and 22 DF, p-value: 0.0009214

In the first part of the output, the actual regression equation is printed. The estimates of the parameters a and
b from the regression equation are shown in the first column of the table (under “Estimate”). The intercept a
(also sometimes called "constant") shows how much the regression line is shifted horizontally. If this value is
close to zero, the regression line goes through the origin. The parameter b reflects the slope of the regression
line. In the third (“t value”) and fourth ("Pr >|t|”) column, we see the value of the t-test and the corresponding
p-value. This test shows whether both the a and b value are significantly different from zero. The t-test for b is
in the case of the simple regression similar as the overall F test (same results). The null hypothesis of the t-test
is that a or b are zero. Furthermore, also a multiple r-squared is shown here. This is a coefficient of
determination R?, and indicates how much variation of the dependent variable Y is explained by the regression.
The F-test will indicate whether the overall regression model is significant. When p <0.05, the null hypothesis is
rejected and the regression is significant. We can plot the regression line in two steps:

> plot(survival ~ glucose, data = Gluc) #plot the dependent variable

(survival) in function of the independent variable (glucose)
> abline(x) #draw the regression line

37

survival

glucose

An extensive plot function exists for the linear regression object. You'll get some useful graphs for the
regression analysis

> plot (x)

Note: the formula is implicitly assumes that the intercept of the y-axis is free to vary. If you want a regression
through the origin, then this formula can be adapted by adding "-1"

> x = Im(survival ~ glucose - 1, data = Gluc)

In this example, however, this makes no sense. Can you see why?

A multiple regression is applied when several independent variables are used to explain the variation in a
particular variable. One must be careful that the number of observations (cases) should always be 10 to 20
times higher than the number of independent variables.

When preparing a multiple regression it is also important to consider the relationship between the
independent variables. Therefore, we test if the independent variables are not multicollineair, i.e. correlated
with eachother. When this is the case, the independent variables are reflecting similar features and it is no
longer possible to asses the influence of each independent variable. This results in a very large standard
deviation of the regression coefficients, threatening the the validity of the model.

Multicollinearity can be checked by calculating

e Correlation between independent variables. If there are strong correlations between independent
variables (|r| > 0.9), it is recommended to remove one of the highly correlated independent variables
from the model.

e Another method to test for multicollinearity is calculating the variance inflation factor (VIF) (=
1/tolerance value). As a rule of dumb, a VIF < 10 (or tolerance value > 0.1) indicates no
multicollinearity.
> x=1lm(survival~glucose+food, data = Gluc)
> library(car)
> vif (x)

Next to the measured values of independent variables (eg salinity, temperature), we can also add quadratic

terms to the regression equation (even in simple regression). This can lead to a better regression line, because
nonlinear relationships (e.g. see scatterplot below) are included in the model.

38

32

30 A

29

28 A

27 A

26 T T T T T 1
40 50 60 70 80 90 100

Furthermore, we can insert, next to the variables themselves, an interaction term in the regression equation.
This term will quantify how e.g. the relationship between the density and temperature, is influenced by the
depth. If consider the squares of each variable, we obtain the following regression equation (e.g. investigating
the relationship between densities of marine organisms, and temperature of the water and water depth).
densiteit = o + 8, * temperature + 8, * depth + 83 * temperature 2+ 8, * depth 2 + 85 * temperature * depth + €

This is the most complex model we can make with two independent variables depth and temperature (diepte
en temperatuur) (= "full model"). In general this can be formulated as :

zi=a+8;x+ 8,y +B3x7 + B,y7 + Bsxy; + €

Between this full model and the simplest model (only intercept a) is a series of regression equations. We will
now have to examine the optimal regression equation. A more complex equation will give better predictions,
but there are more B 's we need to estimate and so we need more observations. We will therefore need to find
the optimal regression equation for a given set of independent variables. This can be automated (stepwise
method) or manually. Generally, the variables have to significantly explain the dependent variable and may not
be multicollineair with other variables.

Below are two methods to arrive at a final regression model:

A multiple regression command has the same structure as for a simple regression. The partial regression
coefficients (ﬂ,.) are a measure of the contribution of the various independent variables to the regression. At-

test examines whether the contribution of all selected independent variables is also significant. If a particular
variable is not significant (partial t-test), then this variable contributes not significantly to the variation of Y,
and the variable should be removed from the equation (the regression is redone without this variable).

We start from drie models:
1. We start with investigating the relationship between survival of the mice, and the independent variables
food and glucose concentration. No interactions between glucose and food is assumed, so this is a linear

model without interaction terms (z =a + 8;x + 8,).

> x=1lm(survival~glucose+food, data = Gluc)
> summary (x)

Call:
Im(formula = survival ~ glucose + food, data = Gluc)
Residuals:

Min 10 Median 30 Max

39

-33.372 -7.456 -1.957 5.909 36.861

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 50.03895 11.99191 4.173 0.000430 **x*
glucose -0.18864 0.04859 -3.882 0.000861 ***
food 0.28492 0.31742 0.898 0.379574

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*" 0.05 '.” 0.1 Y’ 1

Residual standard error: 16.1 on 21 degrees of freedom
Multiple R-squared: 0.4217, Adjusted R-squared: 0.3666
F-statistic: 7.657 on 2 and 21 DF, p-value: 0.003181

1.1. Check if the regressionis significant (global p)

1.2. If not, remove term with lowest significance value (highest p value) and redo regression
1.3. Check if the effect on R? and the p values

1.4. Repeat until you have a good model (all p values < 0,05)

2. Model with interaction terms
> y=lm(survival~food*glucose, data = Gluc)
> summary (y)

2.1. Go through the same steps as above until you have a good model. Note: if a certain variable is
removed, than you also need to remove all interactions with that variable.

3. Full model with interactions and quadratic terms
3.1. Add quadratic terms
> food2=GlucS$food”"2
> Gluc=data.frame (Gluc, food2)
> .

3.2. Go through the same steps as above. Note: If the quadratic term of a variable is included, than the
variable itself also needs to be included.
> z=lm(survival~food*glucose+food2+glucose2, data=Gluc)
> summary (z)
> .

What if there are multiple good models?
e The higher R?, the better the model
e Simple models (less variables) are prefered

e Models (e.g. simple vs complex model) can be compared using ANOVA
anova (modell, model?2)

6.2.2.2 Automated (stepwise) method

In a stepwise method, independent variables (and possibly their squares) are added or removed step by step to
or from the model, based on an F-test. We feed the most complex model (full model). The method will search
among the most complex and the most simple model (only an intercept) for the optimal model based on the
Akaike Information Criterion (AIC). The AIC is used to choose the optimum regression model. It looks for a
balance between the highest predictive power of a regression model and the number of parameters (terms)
used in that model. Consequently, if two regression models give the same output, the most simple model will
be elected. In a forward selection strategy (forward), in each step the independent variable with the highest F
value is added. At the same time the influence of the variables already included in the model is taken into
account. The variables are therefore added in order of their marginal, relative influence on the dependent
variable. When the F-value of a certain independent variable is less than the minimum ” F-to-enter "(FIN), the

40

variable is not included in the model. In the backward selection strategy (backward) for each step the variable
with the lowest F value is each time removed from the model. If this value is greater than the "F-to-remove”,
the variable is not removed from the model. The "Both" method is a combination of forward and backward
selection. Define the most complex model:

> x = Im(survival ~glucose*food + food2 + glucose2,data=Gluc)
Run as step wise analysis:
> y = step(x, direction = "both")

Start: AIC= 140.7

survival ~ glucose * food + food2 + glucose?2
Df Sum of Sqg RSS AIC
- food 2 1 12.3 5130.4 138.8
- glucose:food 1 165.9 5284.0 139.5
- glucose2 1 185.5 5303.7 139.6
<none> 5118.1 140.7

Step: AIC= 138.76
survival ~ glucose + food + glucose2 + glucose:food

Df Sum of Sg RSS AIC
- glucose:food 1 161.3 5291.7 137.5
- glucose2 1 178.9 5309.3 137.6
<none> 5130.4 138.8
+ food 1 12.3 5118.1 140.7

Step: AIC= 137.5
survival ~ glucose + food + glucose?2

Df Sum of Sqg RSS AIC
- food 1 63.6 5355.4 135.8
- glucose2 1 154.3 5446.0 136.2
- glucose 1 419.2 5710.9 137.3
<none> 5291.7 137.5
+ glucose:food 1 161.3 5130.4 138.8
+ food 1 7.7 5284.0 139.5

Step: AIC= 135.79
survival ~ glucose + glucose?2

Df Sum of Sqg RSS AIC
- glucose2 1 299.6 5655.0 135.1
<none> 5355.4 135.8
- glucose 1 666.7 6022.1 136.6
+ food 1 70.0 5285.4 137.5
+ food 1 63.6 5291.7 137.5

Step: AIC= 135.09
survival ~ glucose

Df Sum of Sqg RSS AIC
<none> 5655.0 135.1
+ glucose2 1 299.6 5355.4 135.8
+ survival 1 211.5 5443.5 136.2
+ survival 1 208.9 5446.0 136.2
- glucose 1 3762.4 9417.3 145.3

41

Summary of the final model after stepwise analysis:

> summary (y)

Call:

Im(formula = survival ~ glucose, data = Gluc)
Residuals:

Min 10 Median 30 Max

-33.037 -9.559 -2.799 5.045 39.282

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 56.01974 9.92628 5.644 1.13e-05 ***
glucose -0.18406 0.04811 -3.826 0.000921 =**
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'" 0.1 ' ' 1

Residual standard error: 16.03 on 22 degrees of freedom
Multiple R-Squared: 0.3995, Adjusted R-squared: 0.3722
F-statistic: 14.64 on 1 and 22 DF, p-value: 0.0009214

6.2.2.2 Multiple regression: final notes

In a multiple regression pay attention to the following :
- Arethere more cases than independent variables? (10 to 20 times more)
- Isthe total regression significant? (F test)

- What percentage of the variation is explained by the combination of independent variables (R? adjusted
=R 2 adjusted for the number of independent variables)

- Isthere overlap (multicollinearity) between the selected variables?

- Is their contribution significant? (Partial regression t-test)

6.3 Testing Assumptions: residual analysis

After performing a simple or multiple regression, residuals should always be tested for normality and the
absence of outliers.These must satisfy two conditions:

The following figure shows how the residuals should be normally distributed around the regression line.

Histogram of residuals,
with normal overlay.

Zero (fitted)
regression line

42

We define outliers as residuals resid () of which the absolute value abs () is greater than three times the
standard deviation sd (). We can remove the data for which te residuals are indeed > 3 times the standard
deviation. Removing outliers improves the distribution function towards a normal distribution.

> x = Im(survival ~ glucose, data = Gluc)

> e = resid(x)

> e[abs(e)>3 * sd(e)]

The last command selects the values from the vector e, that are larger than the 3 times the standard deviation.
When outliers are detected, they can be removed, and the remaining residual values are assigned to a new
vector el.

> el = e[abs(e) < 3 * sd(e)]

Test normal distribution of the residual (with all outliers removed):

> shapiro.test (el)

If the residuals (without outliers) are normally distributed, remove the outliers from the data and run the
regression again, without the outliers.

The first command creates a new vector Glucl, containing the data for which the residuals meet the
assumption, the second c ommand performs the regression analysis.

> Glucl = subset (Gluc, abs(e) < 3 * sd(e))
> lm(survival ~ glucose, data = Glucl)

If the residuals are not normally distributed, we perform a transformation of the data. If they are still not

normally distributed, we need to do a regression based on a different distribution of the residuals (not in this
course).

6.4 Tasks
6.4.1 Glucose experiment

Look for a link between glucose and survival and interpret the results. Consider the usefulness of a linear
regression analysis and argue. Consider carefully what you choose as the dependent and what as independent
variable?

6.4.2 Analysis of the hyperbenthos data in 3 European estuaries
We consider the hyperbenthos density in three European estuaries from the first exercise (HyperRegressie.txt).
1. Is there a link between total hyperbenthos density and salinity, temperature or secchi?

2. If they relate, can the variation in hyperbenthos density be explained and described by a known function of
one of the environmental variables, or a combination of some of these? Give a significant regression equation.

43

