Course Overview: Marine Genomics

Prerequisites

- DNA structure: double stranded, base pairing, nucleic acids
- DNA to protein: codons, reading frames
- PCR: primers, reverse complementarity
- Species, populations, individuals

- Mendelian inheritance of nuclear DNA (homologous, diploid chromosomes, meiosis, mitosis)
- Uniparental inheritance of mitochondria & chloroplasts
- The central dogma of molecular biology: DNA transcription mRNA translation protein
- Interpretation of p values of statistical results

Course Content

Individual Level

- Heritability of physiological & morphological traits
- Phenotypic plasticity
- Quantitative genetics
 - Genome scans
 - QTL analyses
 - RNA-seq

End Competences

- Species LevelPhylogenetics
 - Databases
 - Sequence alignment
 - Estimating genetic distances
 - Tree building (Maximum Parsimony, Maximum Likelihood, Bayesian)
 - Calibrating phylogenies
 - Evaluating hypotheses
- Species-delimitation
- Phylogeography & intraspecific divergence

Population Level

- Population Genetics
 - Concepts: alleles, heterozygosity
 - Drift (Wright-Fisher Model)
 - Dispersal
 - Population structure
 - Selection & Mutation
 - Models describing maintenance of genetic variation
- Population Genomics
 - Reduced representation libraries
 - NGS-based genome reduction (Radseq, GBS)
 - Outlier detection
 - Phylogeography
- Organelle (mtDNA) & co-dominant markers (microsatellites)

Community level

- DNA Metabarcoding
- Amplicon sequencing
- qPCR
- Metagenomics
 - Metatranscriptomoics, metaproteomics, metabolomics

genomic level i

- The graduated student understands the ecological and evolutionary processes acting at the genomic level in populations of marine organisms.
 The graduated student has a good knowledge of the terminology used in the field of molecular ecology.
- 3. The graduated students understands the underlying principles of the commonly used molecular techniques, including preservation of tissues and specimens.
- 4. The graduated student is able to make a considerate choice of molecular techniques to address specific ecologically or evolutionary questions.
- 5. The graduated student has acquired the knowledge to correctly analyse and interpret molecular datasets from the individual to the community level.

IMBRSea Compass 2019

